Caterwaul in Ten Minutes

Spencer Tipping
March 4, 2013

1 Purpose of Caterwaul

Caterwaul exists to make Javascript programming easier. It is a compiler, but
it is written in pure Javascript and can interoperate seamlessly with Javascript
code. The simplest way to think about Caterwaul is as a Lisp-style macro layer
that rewrites pieces of your functions.

Generally, Caterwaul programs look like this:

caterwaul (’ :all’) (function () {
// your program goes here

HO;
This form is analogous to what you would normally have:

(function O {
// ...
HO;

The main difference is that we use the function caterwaul (’ :all’) on the
program before invoking it. Doing this allows Caterwaul to macroexpand your
code.

1.1 String interpolation

Caterwaul supports Ruby-style string interpolation, which works for both sin-
gle and double-quoted strings. For example:

caterwaul (’:all’) (function () {

var place = ’world’;
console.log(’hello #{place}!’);
PHO;



1.2 Exercises

These exercises can be run online at http://caterwaul js.org.

1. Locate the shell on the right-hand side of the screen, and run the com-
mand alert(’hi’). Notice that this expression returns undefined. Now
interpolate document.location.href into a string to show an alert box
containing the text, “you are at http://caterwauljs.org/”.

2. Set a global variable x to 18. Notice that using var causes the variable to
disappear; this happens because the web shell runs each command inside
a separate function.

3. Type the expression x = y = z at the prompt and look at the parse tree
below. Based on the tree, is the = operator left or right associative?
2 Binding forms

Most Javascript code inside a Caterwaul program operates exactly as you would
expect. For example:

caterwaul (’ :all’) (function () {

var place = ’caterwaul code’;
console.log(’inside ’ + place);
HO;

However, some expressions will be rewritten. Caterwaul first parses your code
according to Javascript syntax, then looks for parse subtrees with particular
patterns. One of these patterns involves the word where:

caterwaul (’:all’) (function () {
console.log(’inside #{place}’),
where [place = ’caterwaul code’];

HO;

Caterwaul sees the where [...] and creates an inner function scope with
local variable bindings. Here’s the generated code (modulo formatting):

(function O {
(function O {

var place = ’caterwaul code’;
return console.log(’inside ' + (’caterwaul code’) + ’’);
HO;
HO;


http://caterwauljs.org

2.1 Modifiers

where is an example of a modifier, which is a general pattern for modifying
some chunk of code. There are more forms than this, but some common forms
are:

1. stuff, modifier [args]
2. stuff -modifier [args]
3. stuff -modifier- args

4. stuff /modifier [args]

Different forms modify different amounts of code. Because Caterwaul op-
erates on parse trees, the Javascript operator used to separate stuff from
modifier can have varying precedence and therefore apply to varying amounts
of code. For example:

X + 1 -where [x = 5] // (x + 1) - (where [x = 5]) -- this works
X + 1, where [x = 5] // (x + 1), (where [x = 5]) -- this works
X + 1 -where- x = 5 // (((x + 1) - where) - x) =5 -- fails
X + 1 /where [x = 5] // x + (1 / (where [x = 5])) -- fails

The last two cases here fail for different reasons. The first one fails because
where[] can’t see the = 5, since = has low precedence and is therefore an
ancestor of the other nodes. Because of this, where is almost always written
with brackets.

The second one fails because the / operator binds more tightly than the -
operator, which means that x isn’t a part of the code being modified by the
where binding. As a result, x will be undeclared and the code will throw a
ReferenceError.

where is generally written as X, where [...] orasx -where [...].

2.2 Other binding forms

Not all binding forms are modifiers. Caterwaul also uses some rarely-written
bits of Javascript syntax and turns into useful things. For example, you can
write functions in declarative style:

fx) =x+1 // turns into f = function (x) {
// return x + 1;

// }
You can use this form anywhere, including inside a where:

console.log(’#{prefix} #{message()}’),
where [prefix = 'hi’,
message() = ’there’]



You can also create nested functions:

add(x)(y) = x +y // turns into add = function (x) {

// return function (y) {
// return x + y;

// };

// }

It’s often useful to combine where and the function binding form. For
example:

inc(x) = x + increment -where [increment = 1];

Since + and - have the same precedence and left-associate, the expression is
parsed like this:

inc(x) = ((x + increment) - where [increment = 1]);

Warning! Because where creates an inner function, the outer value
of arguments is unavailable. To capture arguments, use a local
variable:

push(array, outer_args = arguments) =
apply(array, ’push’, outer_args)
-where [apply(obj, name, stuff) = obj[name].apply(obj, stuff)];

2.3 Binding objects

You can create an object using where-style syntax. To do this, you use the
capture[] modifier:

obj = capture[x =5, y = 6]
// translates to:
// obj = {x: 5, y: 6}

Notice that due to the way this code is translated, you couldn’t refer to x
when defining y like you can with where. To deal with this, Caterwaul gives
you another form, wcapture, which causes each definition to be bound to a
local variable before returning the object:

obj = wcapture[x =5, y = x + 1]
// translates to:

// obj = (function () {

// var x = 5, y = x + 1;
// return {x: X, y: V};

// Ho

The reason Caterwaul includes these forms is that it lets you use function
binding syntax to create object methods:



obj.prototype = capture [
plus(x) = this.value + x,
times(x) = this.value * x];

You can also simply create those methods using dot-notation:

obj.prototype = {};
obj.prototype.plus(x) = this.x + x;
obj.prototype.times(x) = this.x * x;

2.4 Exercises

1. Use nested function notation to write the compose function. You can
assume that it always takes exactly two functions, and that the inner
function always takes exactly one argument.

2. Variables inside where can see each other. For example, x + y, where
[x =5, y = x + 1]. What happens when x and y are defined in the
opposite order?

3. Write a function args that returns a string of its arguments. For example,
it should return [1, 2, 3] when invoked as args(1, 2, 3).

4. where[] is legal for any expression, including for function arguments.
However, because the commas that separate function arguments are
parsed with left association, you generally shouldn’t use it inside an ar-
gument list. Instead, you should move the where outside of the function
call parentheses. Do this with the example below to make the expression
evaluate to [1, 2].

args(x, y, where [x = 1, y = 2])

3 Fun with sequences

Caterwaul contains a macro called seq that makes it very easy to manipulate
arrays and objects. It works by overloading several operators to perform se-
quence tasks. In order to use this macro, you need to modify some code with
the seq word:

expression -seq // interpret expression in seq context
seq[expression] // same thing

[1, 2, 3] *[x + 1] -seq // * = map; returns [2, 3, 4]

[1, 2, 3] /[x0 + x] -seq // / = fold left; returns 6

[1, 2, 3] /[0][x0 + x] -seq // fold left with initial; also 6

[1, 2, 3] %[x & 1] -seq // % = filter; returns [1, 3]



seq[[1, 2, 3] *[x + 1]1] // same as above
seq[[1, 2, 3] /[x0 + x]]

seql[[1, 2, 3] /[0][x0 + x]]

seq[[1, 2, 3] %[x & 1]1]

Because seq operators have the same precedence, you can chain them:
sum_of_squares(xs) = xs *[x * x] /[x0 + x] -seq;

You can also get keys, values, or [key, value] pairs from objects, and
reassemble pairs into objects. Like Javascript in general, Caterwaul makes no
guarantees about the order in which keys or values are extracted from objects.

obj = {foo: 1, bar: 2, bif: 3};

obj /keys -seq // returns [’foo’, ’bar’, ’'bif’]

obj /values -seq // returns [1, 2, 3]

obj /pairs -seq // returns [[’foo’, 1], [’bar’, 2], [’bif’,
obj /pairs /object -seq // returns {foo: 1, bar: 2, bif: 3}

obj /keys *[x.length] -seq // returns [3, 3, 3]

Notice that /object folds key-value pairs into an object. A variant of this,
/mobject, folds key-value pairs into a multi-object; that is, an object that maps
keys to arrays of values. For example:

pairs = [["foo’, 1], [’'bar’, 2], ['foo’, 3]1];
pairs /mobject -seq // returns {foo: [1, 3], bar: [2]}

You can use this to group things:

group_by(f, xs) = xs *[[f(x), x]] /mobject -seq;

3.1 Exercises

1. Rewrite sum_of_squares to square and add using a single fold step. (Hint:
you need to use a fold-left-with-initial to do this.)

2. Write a function that returns the average value of an array.

3. Write a function that returns the largest value in an object.

4 Generating DOM elements

Caterwaul contains a macro that interfaces with jQuery to build DOM elements.
This macro, called jquery, is similar to seq in that it changes the meaning of
operators inside an expression.

The Caterwaul web shell will detect jQuery objects and render both their
HTML and their DOM as results. The jquery[] macro always returns a jQuery
object.

311



jquery[div(’hello’)] // returns a div with the text "hello"

jquery[div.foo(’hi’)] // <div class='foo’>hi</div>
jquery[div.foo.bar.bif] // <div class="foo bar bif’></div>
jquery[div. foo_bar] // <div class=’foo-bar’></div>
jquery[div(button(’click me’))] // <div><button>click me</></>

// calling jQuery methods:
jquery[div /text(’hi’)] // <div>hi</div>

This macro becomes useful when you want to generate DOM contents from
inside functions:

greeter_for(name) = jquery[div.person /text(name)];
$(’body’) .append(greeter_for (’spencer’));

You can use jquery[] with seq[], butjQuery doesn’t know what to do with
arrays of jQuery objects. When generating arrays of jQueries, you should fold
them into a single collection:

div_for (number) = jquery[div /text(number)];

wont_work = [1, 2, 3] *[div_for(x)] -seq;

will _work = [1, 2, 3] *[div_for(x)] /[x0.add(x)] -seq;
$(’body’) .append (wont_work) ; // DOM exception 8
$(’body’) .append(will_work) ; // this works

4.1 Exercises

1. Write a function that takes a name and email address, and returns a two-
cell table row with these values. (Hint: jquery[] works with all types of
elements.)

2. Write a function that takes an object of the form {namel: emaill, name2: email2,
and returns a table containing everyone’s name and email address.



5 Answers to exercises

Section 1
1. alert('you are at #{document.location.href}’)
2.x =10

3. =isright-associative. A left-associative parse tree would be ("=" ("=" x
y) z).

Section 2
1. compose(f, g)(x) = f(g(x))

2. When defined in the opposite order, y takes the value undefinedl because
x has not yet been initialized. (This is the same thing that happens with
var.)

3. args(arg = arguments) = ’[#{xs.join(", ")}]’
-where [xs = Array.prototype.slice.call(arg)]

4. args(x, y) -where [x = 1, y = 2]
Section 3

1. sum_of_squares(xs) = xs /[0][x0 + x*x] -seq

2. average(xs) = (xs /[x0 + x] -seq) / xs.length

3. largest_value(o) = o /values /[Math.max(x0, x)] -seq
Section 4

jquery[tr(td.name /text(name),
td.email /text(email))]

1. row(name, email)

2. table(people) = jquery[table /append(rows)]
-where [row_array = people /pairs *[row(x[0], x[1])] -seq,
Trows row_array /[x0.add(x)] -seq]

Errata

§2, ex 3 [Hat tip Alan Liu]
The answer was incorrectly listed as:
args() = ’[#{arguments.join(", ")}]1’

This answer fails because the arguments object defines no join method
(unlike arrays, which do). The fix is to convert arguments into an array
before using it inside the string, which can be done in a few different
ways:



args() = ’[#{Array.prototype.slice.call(arguments).join(", ")}]’

args(arg = arguments) = ’[#{xs.join(", ")}]’
-where [xs = Array.prototype.slice.call(arg)]

// using the seq[] macro:
args() = ’'[#{seq[+arguments].join(", ")}]’

The prefix + in sequence context causes an expression to be sliced into an
array. This isn’t documented in the ten minutes guide, but it is described
on the Caterwaul website.



