Caterwaul Reference Manual

Spencer Tipping

March 4, 2012

Contents

1 The caterwaul global 2
2 Syntax trees 5
2.1 Treestructure oL 6
22 Treemethods 6
3 Example: a node.js source preprocessor 10
3.1 Writing a debuggingmacro 11
3.2 Using Caterwaul inside Caterwaul 13

Chapter 1

The caterwaul global

Caterwaul is two different things, at least to me. I tend to use it as a program-
ming language because of its standard macro library. But beneath those macros,
Caterwaul is a general-purpose Javascript syntax tree APIL This separation is
achieved by placing the ideas in separate files: caterwaul. js contains Cater-
waul as a generic code library, and caterwaul.std. js and caterwaul.ui.js
contain macros that you can enable by calling caterwaul (" js_all jquery’).
This guide talks exclusively about caterwaul. js.

Caterwaul introduces exactly one global variable called caterwaul. When
you're using Caterwaul as a programming language, you invoke this global on
a string containing configurations; for example caterwaul (' js_all jquery’).
However, this is an abstraction over some more basic functions. Here are the
most useful public methods of the global caterwaul object:

parse(object) Parses object as Javascript, and returns a syntax tree. The string rep-
resentation of object is obtained by invoking object.toString(); this
works for strings, functions, and other syntax trees.!

For example, here’s a quick way to test parse() (this can be run from the
root directory of the Caterwaul repository):

$ node

> caterwaul = require(’./build/caterwaul.node’).caterwaul
[output]

> caterwaul.parse(’x + y’).structure()

T+t xy)?

>

compile(tree) Similar to Javascript’s native eval(), but works on syntax trees. Unlike
eval (), this method always returns a value. This means that the syntax

I Though as an optimization, Caterwaul is allowed to behave as an identity function if you send
a syntax tree to parse().

tree you pass to compile() must be an expression, not a statement or
statement block.” This may seem like a tremendous limitation, but it isn’t
too bad since you can create anonymous functions:

> caterwaul.compile(caterwaul.parse(’if (true) console.log(5)’))
Error: Unexpected token if while compiling ...

> code = "function () {if (true) console.log(5)}’;

> caterwaul.compile(caterwaul.parse(code))

[Function]

> caterwaul.compile(caterwaul.parse(code)) ()

5 // from console.log()
undefined // return value from function
>

compile() takes two optional arguments. The first is an object containing
named references. This is useful when you want to pass state from the
compile-time environment into the compiled expression. For example:

> tree = caterwaul.parse(’x + y’)

> caterwaul.compile(tree)
ReferenceError: x is not defined

> caterwaul.compile(tree, {x: 3, y: 4})
7

>

Caterwaul passes these values in by constructing a closure and evaluating
your code inside of that closure scope. This means that you can pass in
any value, not just ones that can be easily serialized:

> caterwaul.compile(tree, {x: caterwaul, y: tree})
"function () {return f.init.apply(f, arguments)}x+y’
>

The other optional argument to compile() (which must appear in the
third position if you're using it) is an object containing compilation flags.
As of version 1.1.5, the only flag supported is gensym_renaming, which
defaults to true. You will probably never care about this; it causes any
Caterwaul-generated symbol to be turned into a more readable name
before the expression is returned.

Aside from a few utility methods like merge (), those methods are all that
you're likely to care about on the Caterwaul global. In addition to those meth-
ods, Caterwaul also gives you access to four kinds of syntax trees:

2Expressions are valid when wrapped in parentheses; statements aren’t. compile() wraps its
tree in parentheses and executes that.

caterwaul.syntax

caterwaul .ref

caterwaul .expression_ref

caterwaul. opaque_tree

This represents an ordinary Javascript expression that would come out of
the parse() function. For example:

> caterwaul.parse(’foo(bar)’).constructor === caterwaul.syntax
true

> new caterwaul.syntax(’()’, 'foo’, ’bar’).toString()
’foo(bar)’

>

caterwaul .syntax is covered in more detail in the next chapter.

This gives you a way to insert a reference into compiled code. You can
do this by passing a reference into compile(), but sometimes it’s easier
to use an anonymous reference. Here’s how this works:

tree = caterwaul.parse(’ foo(bar)’)
ref = new caterwaul.ref(function (x) {return x + 1})
caterwaul.compile(tree.replace({foo: ref}), {bar: 5})

vV oV V V

This is kind of an odd one. It behaves like a ref, but tells compile to
evaluate a given expression and insert that expression’s result into the
code. If you can, you should use this instead of ref because it enables
Waul to precompile your source. (The reason is that expressions can be
serialized, whereas arbitrary refs can’t.) Usage is just like ref, but you
pass in an expression instead of a value:

tree = caterwaul.parse(’foo(bar)’);

code = caterwaul.parse(’function (x) {return x + 1}’);
e = new caterwaul.expression_ref(code);
caterwaul.compile(tree.replace({foo: e}, {bar: 5}));

VvV ooV V V V

A literal chunk of code that is initially unparsed. This lets you work
with code in a structured way but without introducing parsing overhead;
it’s used internally by things like the replication function. Generally you
won't instantiate these directly.

If you have an opaque tree and want to see its internal structure, you can
get a parsed tree by calling .parse(). Unlike the caterwaul global parse
function, this one is nullary and just parses the receiver, nondestructively
returning a new tree with no opaque subtrees.

Chapter 2

Syntax trees

Most of Caterwaul’s cool functionality is implemented as methods on syntax
trees, and all of the standard macros make liberal use of these methods. They
exist in several categories. First, there are a bunch of methods that help you
use syntax trees as patterns or templates. For example:

> pattern = caterwaul.parse(’_x + _y’);

> match = pattern.match(caterwaul.parse(’f(z) + bar’))
{ x: {...}, _y: {...3, _: {...} }

> match._x.toString()

' £(2)’
> match._y.toString()

"bar’

> match._.toString()

"£(z) +bar’ // please forgive Caterwaul’s questionable whitespace style
>

The exact semantics of match() are that it treats anything starting with an
underscore as a wildcard. The result of match() is either null (or undefined)
or an object that maps each underscore-wildcard to the subtree that matched
at that position. It then maps the underscore itself to the entire matching tree;
thatis, x.match(y)._ === yforally.

match() by itself is boring, but there’s a complementary method called
replace() that makes it awesome:

> new_pattern = caterwaul.parse(’_x(_y) + _y’);
> new_tree = new_pattern.replace(match);

> new_tree.toString()

"f(z) (bar) +bar’

>

2.1 Tree structure

A syntax tree looks like an array, except that it also has a data property. It is
also assumed that a syntax tree won’t be modified after it is constructed; almost
all of the methods available for trees are nondestructive.!

> t = caterwaul.parse(’foo + bar’);
{ ’0’: { data: ’foo’, length: 0 },
"1’: { data: ’bar’, length: 0 },

data: '+,
length: 2 }
> t[0]
{ data: ’'foo’, length: 0 }

>

Most of the time you won’t need to deal with this structure, as the methods
below cover the most common use cases. But all of these methods ultimately
interact with this array-like structure.

2.2 Tree methods

Here’s the complete rundown of useful methods on syntax trees:*

match Typically used as pattern.match(tree), and returns either an object, or
undefined or null.

Explained above, match() is used to perform pattern matching on syntax
trees. This method completes in O(n) time and O(d + k) GC overhead,
where 1 is the total number of nodes in the pattern tree, d is the maximum
depth of the pattern tree, and k is the number of wildcards in the pattern
tree. Entries in the resulting object are references, not copies, of the
matching subtrees.

replace Typicallyusedas template.replace(match) or template.replace({vl: tl1, v2: t2, ...}),
and returns a new syntax tree.

This method is basically the inverse of match(). The object passed to
replace() dictates the replacements to perform. Generally, templates
are written with underscore-prefixed variables (though you don’t have to
do it this way), and you then build objects that map underscore-prefixed
keys to syntax trees. For example:

> caterwaul.parse(’_x + _y’).replace({_x: ’foo’, _y: ’bar’}).toString()
’foo +bar’
>

1The only exceptions are push and pop, which are helpful when working with flattened trees.
See flatten and unflatten in the method list for more details about this.

2Syntax trees also have a number of internal methods, prefixed with underscores. These are
useful only for Caterwaul’s parser and you shouldn’t use them.

toString

structure

id

as

flatten

You can pass in strings (instead of trees) as values, as in the example
above. If you do this, each non-tree will be promoted into a syntax tree
with no children.

Typically used as tree.toString().

Generates compilable, but not particularly nice-looking, Javascript code
for the receiver. This method is optimized for performance by building
an intermediate array and then using one join() call, so the GC overhead
should be O(n) in the total length of the serialized tree. Caterwaul uses
this output when compiling functions, and it can be used to inspect code.

Typically used as tree.structure().

A more detailed representation than toString. This method generates
an S-expression that describes the structure of the parse tree. For exam-
ple, toString() might return 3 + x * 10, but structure would return
¢'+" 3 " ox 10)).

Typically used as tree.id().

Returns a unique string identifying the receiver. This is useful when you
need to keep track of a syntax tree, such as when maintaining a set of
visited nodes using a Javascript object.

Typically used as tree.as(’+') or similar.

Takes the destination tree type. If the receiver is of this type, then as()
returns the receiver; otherwise, as() returns a unary node of the given
type whose child is the receiver.

This is useful when you want to unify several cases into a single bit of
logic. For instance, suppose you're writing a macro that allows the user
to enter either an array (inside brackets), or a single item (not inside
anything). You can invoke node.as(’[’) to convert the non-bracketed
case into a single-element bracketed case. This lets you eliminate the
non-bracketed case from the majority of your macro logic.

Typically used as tree.flatten(’*’) or similar.

Normally binary operators are arranged into binary trees by their prece-
dence and associativity. So, for example, 3 + 4 + 5 parses out to become
(+ (+ 3 4) 5). However, sometimes it's useful to have a syntax tree
that contains all elements of a summation at the same level. flatten
constructs a flattened tree based on the associativity of the operator. So,
for example:

> caterwaul.parse(’3 + 4 + 5’).structure()

A"+ ("+" 3 4) 5)°

> caterwaul.parse(’3 + 4 + 5’).flatten(’+’).structure()
T("+" 3 4 5)’

>

unflatten

each

map

reach

flatten() takes a string to indicate the kind of node you want to flatten
over. This can be any Javascript operator. If the receiver isn’t that kind
of node, flatten returns a unary node of the type you provided that
contains only the receiver. This is useful for cases like £(x), which can
still be flattened under + and will become a + node whose only child
is £(x). This means that regardless of the type of the receiver, you can
always flatten it and iterate over its children with the same effect.

Nodes returned from flatten() can be used much like arrays; for exam-
ple, this function will parse and evaluate a numeric sum:

> evaluate = function (sum_as_string) {
var terms = caterwaul.parse(sum_as_string).flatten(’+’);
for (var i = 0, total = 0, 1 = terms.length; i < 1; ++i)
total += +terms[i].data;
return total;
b
> evaluate(’l + 2 + 3 + 4’)
10
>

Typically used as tree.unflatten().

The inverse of flatten, with the caveat that it won’t delete unary nodes
that flatten() may have created. The receiver is converted to binary
form according to the associativity of its operator, and the resulting node
will contain only binary instances of the receiver’s operator. If the receiver
is unary or nullary, then the return value is structurally equivalent to the
receiver.

Typically used as tree.each(f), where £ is a function.

Invokes f on each direct child of tree, returning the receiver. fis actually
called on two parameters. The first is the child, and the second is the
child’s numeric index (starting at 0).

Typically used as tree.map(f), where £(child, i) returns a new child
or false.

Invokes f on each direct child of tree, returning a new tree with the same
data as the receiver, but whose children are the return values of f. If £
returns false for any child, the original child is used.

Typically used as tree.reach(f), where f is a function.

Similar to each, except that f is invoked on the receiver and all of its
descendants in depth-first pre-order. f receives only one parameter when
invoked on the root node; for all other nodes it receives two.

rmap

peach

pmap

clone

collect

contains

Typically used as tree.rmap(£f), where f(node, i) returns a new node,
true, or false.

Similar to map, except that f is invoked on the receiver and all of its
descendants in depth-first pre-order. A number of rules apply:

(a) If £f(node, i) returns node or false, then children of node are vis-
ited.

(b) If £(node, i) returns true, then node is preserved and its descen-
dants are not visited.

(c) If f(node, i) returns a new node, then the new node replaces node
and its descendants are not visited.

Typically used as tree.peach(f), where f is a function.

Semantically identical to reach, except that traversal happens in depth-
first post-order. That is, a node is visited after, not before, its children are
visited.

Typically used as tree.pmap(£f), where f(node, i) returns a new node,
true, or false.

Semantically similar to rmap, except that traversal happens in depth-first
post-order and all descendants are always visited. (This has to be the
case, since the return value of f(node, i) is unknown until after all
descendants of node have been visited.)

Typically used as tree.clone().

Returns a deep copy of the receiver.

Typically used as tree.collect(predicate), where predicate(node)
returns true or false.

Builds and returns an array of all descendants (possibly including the
receiver) for which predicate(node, i) returns a truthy value. The
array will be in depth-first pre-order.

Typically used as tree.contains(predicate), where predicate(node)
returns true or false.

Returns the first descendant (or the receiver) for which predicate(node,
i) returns a truthy value, or undefined if predicate matches no trees.

Chapter 3

Example: a node.js source
preprocessor

Now that you've seen the gory details of what Caterwaul is made of, let’s put it
to good use by writing a handy preprocessor for node.js. The most trivial way
to preprocess things is to just parse them and convert them back to strings, so
let’s do that first. Here’s the basic setup:

$ 1s

caterwaul.node.js my-preprocessor.js

$ cat my-preprocessor.js

var caterwaul = require(’./caterwaul.node.js’).caterwaul;
$

Normally you do asynchronous IO in node, but since this application doesn’t
need to field any HTTP requests we can afford to block. Here’s a basic identity
preprocessor:

examples/nodejs-preprocessor/identity.js

var caterwaul = require(’./caterwaul.node.js’).caterwaul;
var filename = process.argv[2];
var source = require(’fs’) .readFileSync(filename, ’utf8’);
var parsed = caterwaul.parse(source);
require(’fs’).writeFileSync(

filename.replace(/\.js$/, ’.out.js’),

parsed.toString(),

‘utf8’);

We can now run this on itself to make sure it works (if you've got the
Caterwaul repo checked out, it’s in doc/examples/nodejs-preprocessor):

$ 1s
caterwaul.node.js identity.js

10

$ node identity.js identity.js

$ 1s

caterwaul.node.js identity.js identity.out.js
$

At this point, identity.out. js is a less-readable version of the program
above. If you run it on itself, it should produce itself again; Caterwaul’s
parse/serialize cycle stabilizes after a single iteration.’

3.1 Writing a debugging macro

Ok, let’s make this thing useful. As a use case, let’s say that you want to be
able to write /log after any expression to side-effectfully log it but still return
its usual value. Normally a similar effect can be achieved by writing a trace
function that looks something like this:

var trace = function (x) {
console.log(x);
return Xx;

};

But being strongly anti-Lisp (and thus anti-parenthesis),” you want a less
disruptive way to write it. So you're opting for the more Caterwaul-idiomatic
operator form. Here’s the basic transformation you want:

x /log -> (function (y) {console.log(y); return y})(x);

It doesn’t matter what the function parameter is called, so we can just name
it something generic like x or y. Division is also high-enough precedence that
we don’t need to worry about changing the meaning of a comma inside x.’
There are more and less tedious ways to write this transformation. Here’s one
way to do it:

var log_template = caterwaul.parse(’_x /log’);
var expansion_template = caterwaul.parse(

"(function (x) {console.log(x); return x})(_x)’);
var each = function (subtree) {

var match = log_template.match(subtree);

return match && expansion_template.replace(match);

11"m not absolutely sure about this, but I strongly suspect it to be the case and have never seen
it fail to converge.

2Irony of putting anti-parenthetical sentiments inside parentheses fully intended.

3Imagine if we wanted to write x, log. Because the comma left-associates, x, y, log would
end up rewriting into a function call on (x, y), which Javascript will interpret as two separate
arguments rather than as one argument which is a comma. When this danger is present, you need
to wrap the argument in another set of parentheses. Fortunately, it won’t happen here because / is
much higher-precedence than comma.

11

1
var transform = function (tree) {
return tree.rmap(each);

};

This will mostly work. There’s only one significant problem, and it arises
due to the way rmap () works. Let’s suppose each() replaces a sub-tree. rmap ()
won’t then descend into that subtree to re-expand any /log expressions that it
contains. (For example, consider something like £(x /log) /log.) We can fix
this by explicitly expanding the match body like this:

var each = function (subtree) {
var match = log_template.match(subtree);
return match && expansion_template.replace({_x: transform(match._x)});

1
Here’s the complete program:

examples/nodejs-preprocessor/debugger-rmap. js

var caterwaul = require(’./caterwaul.node.js’).caterwaul;
var filename process.argv[2];

var source = require(’fs’).readFileSync(filename, ’utf8’);
var parsed caterwaul .parse(source) ;

var log_template = caterwaul.parse(’_x /log’);
var expansion_template = caterwaul.parse(
"(function (x) {console.log(x); return x})(_x)’);
var each = function (subtree) {
var match = log_template.match(subtree);
return match && expansion_template.replace({_x: transform(match._x)});
b
var transform = function (tree) {
return tree.rmap(each);

1

require(’fs’).writeFileSync(
filename.replace(/\.js$/, ’.out.js’),
transform(parsed) .toString(),
utf8’);

And a test case:

examples/nodejs-preprocessor/debugger-test.js

var £ = function (x) {
return x + 1;

};

f(5 /log, 10 /log) /log;

12

If this seems like a lot of work to go to just for one macro, that’s probably
because it is. A simpler way to go about it is to create a custom compiler that
implements our macro for us. This gets rid of the explicit rmap and provides us
with a way to indicate that we want to re-expand something. Here’s what that
looks like:

var each = function (subtree) {

var match = log_template.match(subtree);

return match && expansion_template.replace({_x: this(match._x)});
1

var transform = caterwaul (each);

Notice the strange call to this() inside each. When you hand a macroex-
pander function like each to Caterwaul, it invokes it on each node in the syntax
tree just like rmap does. However, it also passes the current compiler in as this.
This lets you easily re-expand subtrees like we’re doing here. It also makes it
so that we don’t need an external reference to the transform() function; now
we can inline that into the main logic:

examples/nodejs-preprocessor/debugger-caterwaul. js

var caterwaul = require(’./caterwaul.node.js’).caterwaul;
var filename = process.argv[2];

var source require(’fs’) .readFileSync(filename, ’utf8’);
var parsed = caterwaul.parse(source);

var log_template = caterwaul.parse(’_x /log’);
var expansion_template = caterwaul.parse(
"(function (x) {console.log(x); return x})(x)’);
var each = function (subtree) {
var match = log_template.match(subtree);
return match && expansion_template.replace({_x: this(match._x)});

1

require(’fs’) .writeFileSync(
filename.replace(/\.js$/, ’.out.js’),
caterwaul (each) (parsed) .toString(),
ut£8’);

3.2 Using Caterwaul inside Caterwaul

This is where things get fun. The example above can be condensed like crazy
once we have the Caterwaul standard library to work with. To do this, let’s
first build a node js file that contains what we need:

examples/nodejs-preprocessor/build-node-std

13

#! /bin/bash
curl caterwauljs.org/build/caterwaul.{node,std}.js > caterwaul.node.std.js

When this is required, we’ll have a Caterwaul instance that can be cus-
tomized with js_all. First, let’s make sure this works by writing a small
test:

examples/nodejs-preprocessor/caterwaul-test.js

var caterwaul = require(’./caterwaul.node.std.js’).caterwaul;
caterwaul (" js_all’) (function () {
console /"log/ ’hello from inside caterwaul!’})Q);

So far so good. Now let’s start leveraging some of the awesomeness that is
the Caterwaul standard library. A couple of optimizations immediately jump
out. First, we can use quotation instead of invoking caterwaul .parse directly.
Quotation is both a modifier and a flag we can put onto string literals. Either
will work in this case; I'll use the modifier. Now we can write this:

var log_template = _x /log -gs;

var expansion_template = (function (x) {
console.log(x);
return x;

Hx) -gs;

This is an important bit of progress. When you mark something with the
gs modifier, Caterwaul parses it up-front and drops a reference to the parse
tree into your code. This behavior is different from invoking caterwaul . parse,
which will re-parse the same code every time you call it. This means that now
we can inline the log template and the expansion template into our code:

var each = function (subtree) {
var match = (_x /log -gs).match(subtree);
¥
Using some of Caterwaul’s syntactic niceties, we can end up writing this:

each(subtree) = expansion_template /"replace/ {_x: this(match._x)} /when.match
-where [match = gs[_x /log] /"match/ subtree,
expansion_template = gse[_x -se- console.log(it)]]

One of the cool parts here is gse, which is just like gs but quotes the tree
after Caterwaul has macroexpanded it. This means that -se- will disappear and
turn into something remarkably similar to our original expansion template.*

Once you've loaded caterwaul.std. js (which we did by appending it to
caterwaul.node. js), the caterwaul global has some extra functions that are
particularly useful for writing macros like this. They are pattern, expander,
reexpander, replacer, and rereplacer. Here’s what each one does:

4The only semantic difference is that -se- invokes the function by using .call(this, x),which
makes it so that any references to this inside the side-effect refer to the outer this.

14

pattern Takes a string or syntax tree and returns a function that calls its matcher.
Logically, caterwaul.pattern(x) (tree) = caterwaul.parse(x).match(caterwaul.parse(tree)),
though pattern() doesn’t re-parse its argument every time.

expander Takes a string or syntax tree and returns a function that calls its replacer.
Logically, caterwaul . expander(x) (object) = caterwaul.parse(x).replace(object).

reexpander Justlike expander, but returns a function that invokes this on the expan-
sion output.

replacer Takes two string-or-syntax-trees and returns a function that matches its
argument against the first argument and replaces using the second. It's
basically like the each we defined earlier, but it doesn’t re-expand the
matching region(s).

rereplacer Justlike replacer, but the output after replacement is re-expanded usin

p p P P p g
this. This is basically identical to the semantics of each, so we'll use this
to write our new-and-improved macroexpander.

Here’s the idiomatic Caterwaul implementation of our preprocessor (I've
aliased $ to caterwaul for conciseness):

examples/nodejs-preprocessor/caterwaul-implementation. js

var caterwaul = require(’./caterwaul.node.std.js’).caterwaul;
caterwaul (" js_all’) (function () {
fs.writeFileSync(output_file, $(expand) (parsed).toString(), ’utf8’)

-where [fs = require(’fs’),
output_file = process.argv[2].replace(/\.js$/, ’.out.js’),
parsed = §.parse(fs.readFileSync(process.argv[2], 'utf8’)),

expand = $.rereplacer(_x /log -gs, _x -se- console.log(it) -gse)]},
{$: caterwaul, require: require})Q;

The only particularly interesting thing is that we’re binding some variables
outside of the function’s context. In particular, we're binding require to itself,
which probably seems strange. I was kind of surprised the first time I found
that this was necessary. It turns out that require isn’t global in node.js; it’s
a lexically-scoped variable that is available at the toplevel but not from inside
a globally-compiled function. So if you remove the binding for require, the
program will fail with a ReferenceError.

An interesting aside: If you run this program on itself it will emit
something that’s invalid! This is kind of an interesting point, I
think. Our macroexpander doesn’t know anything about Cater-
waul’s standard library or quotation or anything; it’s just a blind
replacer that looks for trees of the form something /log. Well,
we happen to have a tree like that in the original: _x /log -gs.
Our macroexpander will happily preprocess this into its expan-
sion, (function (x) {console.log(x); return x})(_x). We'll
then end up with a program that contains something like this gem:

15

$.reexpander ((function (it) {console.log(it); return it}).call(this, _x) -gs,
_X -se- console.log(it) -gse);

This re-expander, of course, doesn’t do anything (except that it will

infinite-loop if something matches the pattern, since the pattern and
the expansion are the same).

16

	The caterwaul global
	Syntax trees
	Tree structure
	Tree methods

	Example: a node.js source preprocessor
	Writing a debugging macro
	Using Caterwaul inside Caterwaul

