Cheloniidae Turtle Graphics

Spencer Tipping

Contents

Y

1__Introduction|

2.2.1 Spherical Coordinates|
2.2.2 Cylindrical Coordinates|
2.2.3 Orthogonal Planar Coordinates|.

W WNDNN =

N Ul = = W

1 Introduction

Cheloniidae turtle graphics is a capable, easy-to-use library for Java. It pro-
vides many advanced features such as three-dimensional space support un-
der three different coordinate models, multiple turtles, antialiased and depth-
adjusted rendering, highly customizable axes and grids, and perspective pro-
jection, all without losing the simplicity and elegance of pure vector graphics.

This library originated as a drop-in replacement for the Galapagos turtle
software, used primarily for educational purposes. As such, there are two sets
of commands: One set uses the same nomenclature and functionality as the
original Galapagos library, and the other uses my nomenclature and supports
the extensions listed previously. For more details, see section 3}

2 Extensions

As mentioned earlier, Cheloniidae provides several extensions to the tradi-
tional turtle model.

2.1 State Stack

Each turtle maintains a stack of states. A state is simply a turtle’s location and
heading. Under normal operation, a turtle has only one state, which is mod-
ified with the normal movement and turn commands. However, a turtle can
also “remember” its old states and jump back to them by pushing and popping
states from its internal state stack.

This is useful for building a fractal tree, for instance. The included example
file tree. java implements this concept using the turtle stack. The premise
is this: A tree consists of a line forwards and two more trees spaced at some
angle apart. Here is some simple code to implement this idea:

public static void tree (Turtle t, int recursionLevel) {
t.move (10);

if (recursionLevel > 0) {
t.pushTurtleState ();
t.turn (-5);
tree (t, recursionLevel - 1);
t.popTurtleState ();
t.pushTurtleState ();
t.turn (5);
tree (t, recursionLevel - 1);
t.popTurtleState ();

}

}

The state stack works very well with recursive algorithms, as demonstrated
here. The number of state entries that can be stored at a time is limited only by
Java’s heap size, however it is an error to pop an empty stack.

2.2 Coordinate Models

Cheloniidae seamlessly integrates two-dimensional and three-dimensional draw-

ing. By default, a turtle draws only on the plane and the model is for all pur-
poses two-dimensional. However, by changing the turtle’s ¢ heading, the tur-
tle begins to change its z position.

Depending on the drawing, different coordinate models will make sense.
For example, drawing a sphere such as those in the included example spheres
is most easily achieved using spherical coordinates. However, spherical coor-
dinates make it very difficult to draw a spiral. There are similar tasks that are
well-suited to other models, so three separate coordinate models are provided.
Others may be written for Cheloniidae without very much work, especially by
inheriting from the Turtle class.

2.2.1 Spherical Coordinates

Spherical coordinates allow the turtle’s default plane to be bent into a cone
whose depth angle is determined by ¢. By default, ¢ = 0, so the plane is flat.
Mathematically, the distance vector (dx, dy, dz) moved by the turtle for a move
of distance d is computed this way:

. jJava

dx = dcos 0 cos ¢
dy = dsinf cos ¢
dz =dsin¢

2.2.2 Cylindrical Coordinates

Cylindrical coordinates allow the turtle’s drawing plane to be rotated about
the Y axis. The degree of rotation is determined by ¢, which is zero by de-
fault. Mathematically, cylindrical coordinates are implemented as follows (see

section for notation):

dx = d cos 0 cos ¢
dy =dsinf
dz = d cos 0sin ¢

2.2.3 Orthogonal Planar Coordinates

The idea behing orthogonal planar coordinates is that the plane in which the
turtle’s local 6 coordinate operates can be rotated arbitrarily. By default, its nor-
mal vector is oriented along the z axis; however, ¢ and ¢ provide y-axis rotation
and relative x-axis rotation, respectively, in a spherical setting. Mathematically,
orthogonal planar coordinates are implemented as follows (see section[2.2.1|for
notation):

dx = d - [cos 0 cos ¢ + sin O sin ¢ sin ¢]
dy = dsinfcos¢
dz = d - [cos 0 sin ¢ — sin 6 cos ¢ sin &]

3 Command Index

This section lists all of the commands supported by the Turtle class in Cheloni-
idae. All of the examples assume the following definitions:

import cheloniidae.x;

public class test {
public static void main (String[] args) {
TurtleDrawingWindow w = new TurtleDrawingWindow () ;
Turtle t = new Turtle ();
w.add (t);

// Any example would be legal here.
w.setVisible (true);

}
}

3.1 Basic Commands

These commands allow the turtle to create basic shapes. If only these com-
mands are used, then the turtle will remain in a two-dimensional plane; thus
we postpone the three-dimensional details to section[3.2}

move Moves the turtle a given distance along its heading, drawing a line if the

penis down. If the distance is negative, then the turtle moves backwards.
Example: t .move (100) ;

moveTo Moves the turtle to a specific location, drawing a line if the pen is down.

The turtle’s heading is not taken into account and not changed by this
operation.

Example: t .moveTo (50, 10);
jump Moves the turtle a given distance along its heading without drawing a
line. If the distance is negative, then the turtle moves backwards.
Example: t . jump (100) ;
jumpTo Moves the turtle to a specific location without drawing a line. Like moveTo,
the turtle’s heading is not considered for this operation.
Example: t . jumpTo (10, 10);
turn Adds an angle to the turtle’s heading. The turtle does not draw anything
when it is turned. All headings are measured in degrees.
Example: t.turn (90) ;
setPenColor Sets the color of future lines drawn by the turtle. The color may be
translucent, in which case the drawn lines will also be translucent.
Example: t.setPenColor (java.awt.Color.BLUE) ;
setPenIsDown Determines whether the turtle will draw lines when moved. By default,
this is true.

Example: t.setPenlIsDown (true);

3.2 3D Commands

These commands allow the turtle to travel anywhere in 3D space and change
coordinate models.

moveTo In addition to the two-dimensional version, moveTo may also take a z
parameter.

Example: t .moveTo (0, 3, 10);

jumpTo The same is true of the jumpTo command.

Example: t . jumpTo (10, 28, 1);

turnTheta Rotates the turtle within its immediate plane or cone. The exact behavior
of this command is determined by the coordinate model used. (See sec-
tion[2.2]) This command is an alias for the turn command. (See section

B.1H

Example: t.turnTheta (-90) ;

turnPhi Adjusts the turtle’s ¢ heading. The exact behavior of the ¢ heading de-
pends on the coordinate model. (See section[2.2])

Example: t.turnPhi (45);

turnXi Adjusts the turtle’s ¢ heading. This is meaningful only if the turtle is
using the orthogonal-planar coordinate model. (See sections and

22

Example: t . turnXi (30) ;

setPolarAxisModel Determines the roles of the turtle’s 3D heading coordinates, 6, ¢, and
g. See section[2.2] for a mathematical description of these roles. Valid set-
til‘lgS are Turtle.Z_SPHERICAL, Turtle.Y_CYLINDRICAL,and Turtle.ORTHOGONAL_PLANAR.

Example: t.setPolarAxisModel (Turtle.Z_SPHERICAL) ;

3.3 Accessors

The turtle provides accessors to its position, heading, and several other fields.
Accessors follow a standard naming convention; a field named namingConvention,
for example, would have accessors getNamingConventionand setNamingConvention.

e X, Y, Z: double

e headingTheta, headingPhi, headingXi: double
e bodyColor: java.awt.Color

e penColor: java.awt.Color

e penlsDown: boolean

e penSize: double

e delayPerMove: int

e visible: boolean

e polarAxisModel: int - see section[3.2]for a list of valid values.

3.4 Advanced Turtle Commands

These commands are not normally used for simple scenes. They are provided
for more complex scenes such as fractal formations. Others are simply more
esoteric commands that one doesn’t normally use.

pushTurtleState Each turtle maintains a stack of states (see section [2.1). This command
causes the turtle to push its current state onto the stack for later recovery.
Its current state is not altered by this command.

Example: t .pushTurtleState();

popTurtleState This command causes the turtle to pop the last pushed state from the
stack and restore its state. Its current state is replaced by the state from
the top of the stack.

Example: t .popTurtleState () ;

replicate Returnsa duplicate of the current turtle and adds it to the current Turt leDrawingWindow.
The result is that code such as this:

Turtle tl = t.replicate ();
tl.move (100);

is not only legal but does what it seems like it should.

setBodyColor Each turtle is drawn in its position on the screen. Setting the body color
determines what color it is drawn in. Translucency is enabled for this
color setting.

Example: t . setBodyColor (java.awt.Color.BLACK) ;

setPenSize Sets the width of the lines that the turtle draws. 0.5 is approximately the
minimum, and there is no maximum.

Example: t.setPenSize (0.5);

setVisible Determines whether the turtle itself is drawn. If this is false, then only the
lines drawn by the turtle are visible, but the turtle is hidden. Setting this
value to false may improve rendering speed if rendering is performed
while the TurtleDrawingWindow is visible.

Example: t.setVisible (false);

setDelayPerMove Each turtle has a default delay amount per move. This is so that the
drawing process can be observed step-by-step. The number of millisec-
onds to wait per move may be changed using this parameter. If set to
zero, then the turtle draws as fast as possible. Note that this parameter
doesn’t make any difference if the turtle is drawing on a window before
the window is shown.

Example: t . setDelayPerMove (0) ;

	Introduction
	Extensions
	State Stack
	Coordinate Models
	Spherical Coordinates
	Cylindrical Coordinates
	Orthogonal Planar Coordinates

	Command Index
	Basic Commands
	3D Commands
	Accessors
	Advanced Turtle Commands

